Mesenchymal Stem Cells: Mechanisms of Inflammation

Nora G. Singer¹ and Arnold I. Caplan²

¹MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; email: nora.singer@case.edu
²Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio 44106; email: aic@case.edu

Keywords
- immune modulation

Abstract
In adults, human mesenchymal stem cells (hMSCs) are found in vivo at low frequency and are defined by their capacity to differentiate into bone, cartilage, and adipose tissue, depending on the stimuli and culture conditions under which they are expanded. Although MSCs were initially hypothesized to be the panacea for regenerating tissues, MSCs appear to be more important in therapeutics to regulate the immune response invoked in settings such as tissue injury, transplantation, and autoimmunity. MSCs have been used therapeutically in clinical trials and subsequently in practice to treat graft-versus-host disease following bone marrow transplantation. Reports of successful immune modulation suggest efficacy in a wide range of autoimmune conditions, such as demyelinating neurological disease (multiple sclerosis), systemic lupus erythematosus, and Crohn’s disease, among others. This review provides background information about hMSCs and also describes their putative mechanisms of action in inflammation. We provide a summary of ongoing clinical trials to allow (a) full comprehension of the range of diseases in which hMSC therapy may be beneficial and (b) identification of gaps in our knowledge about the mechanisms of action of therapeutic MSCs in disease.
INTRODUCTION

Adult human mesenchymal stem cells (hMSCs) can be isolated from a variety of tissues, including bone marrow, muscle, fat, and dermis. Depending on the stimulus and the culture conditions employed, these cells can form bone, cartilage, muscle, fat, and other connective tissues (Figure 1) (1–3). These observations originally suggested that MSCs were responsible for the normal turnover and maintenance of adult mesenchymal tissues, but over the past decade it has become clear that all MSCs are pericytes (1) and that it is their pleiotropic nature that allows them to sense and respond to an event in the local environment, be it injury or inflammation. This is their most important biological property.

The original mesogenic process pathway (Figure 1) was hypothesized and fashioned after the hematopoiesis lineage diagrams of the 1980s. We built our original hypotheses about the regenerative potential of MSCs for damaged bone and cartilage based on our knowledge that osteoblasts and chondrocytes are derived in lineage-progression pathways, as shown in studies from our own and other laboratories (4, 5). This suggestion arises from the facts that all cells have half-lives and that their natural expiration must be matched by their replacement; MSCs are the proposed source of these new replacement cells. This replacement hypothesis mimics the known sequence of events involved in the turnover and maintenance of blood cells that are formed from hematopoietic stem cells (HSCs) (6).

Figure 1
The mesogenic process. Human mesenchymal stem cells (hMSCs) from bone marrow may develop into bone, muscle, or adipose tissue, depending on the stimuli to which they are exposed in vitro. Shown is a hypothesis of the mesogenic process that hMSCs undergo both in vitro and in vivo. Reproduced from Reference 21 with permission.

458 Singer • Caplan
The replacement and turnover role for MSCs is also supported by our data showing that, if \((10^2 - 20) \times 10^6\) cells from the light cell fraction of a bone marrow aspirate were seeded into a 100-mm Petri dish, colonies of fibroblastic cells (CFU-F) would be observed by days 10–12 (7). A dramatic decrease in MSCs per nucleated marrow cell can be observed when the results are grouped by decade: There is a 10-fold decrease from birth to the teenage years and another 10-fold decrease from the teenage years to old age. In comparison, titer of HSCs in marrow remain constant throughout life at approximately 1 per \(10^4\) nucleated marrow cells.

MESENCHYMAL STEM CELLS

For the purposes of this review, cells that are isolated from adult bone marrow and are multipotent for skeletal phenotype are referred to as hMSCs because their reparative function appears to extend beyond the integumentary and musculoskeletal system. Unlike HSCs, hMSCs can be culture expanded ex vivo in up to 40 to 50 cell doublings without differentiation (8). Whether native hMSCs are abnormal is not entirely clear, although at least one study suggests that rheumatoid arthritis (RA) may be associated with premature senescence of hMSCs (9). RA has been associated with increases in lymphocyte proliferation and accumulation of lymphoid aggregates in synovium, which are sometimes referred to as tertiary lymphoid organs. We and others have demonstrated that hMSCs and their secreted products can inhibit T-lymphocyte activation and proliferation induced by mitogens, recall antigens, and alloantigens in vitro (10–16). In vitro hMSCs require activation (as do, presumably, those in vivo) (17), and activating stimuli appear to include secretion of transforming growth factor \(\beta 1\) (TGF-\(\beta 1\)) and interaction with CD14\(^+\) monocytes and involve the proinflammatory cytokine interleukin-1\(\beta\) (IL-1\(\beta\)). hMSCs modulate cytokine production by the dendritic and T cell subsets DC1/Th1 and DC2/Th2 (18), block antigen presenting cell (APC) maturation and activation (19), and increase the proportion of CD4\(^+\)CD25\(^+\) regulatory cells in a mixed lymphocyte reaction (20). Recent data suggest a role for hMSCs in angiogenesis and that hMSCs may sense and respond to their environment (21). This feature of hMSCs calls into question whether the effects observed on allogeneic mixed lymphocyte reactions in vitro and on graft-versus-host disease (GVHD) in vivo should be categorized as immune suppressive, which would imply a nonspecific downregulation of immune responses or as inducing immune tolerance—an active and specific suppression of aberrant immune responses. Finally, all hMSCs may be pericytes and, thus, would be present in all vascularized tissues. Because vascular density decreases by one or two orders of magnitude with age, the local availability of hMSCs or pericytes likewise decreases substantially with age (22). The presence of activated hMSCs at sites of inflammation or injury is understood, given that pericytes would be released from their endothelial interactions in such vascularized locations, although the relative number and source of hMSCs that are mobilized from remote sites, versus those that are derived from proximate vascularized sites, are topics of ongoing investigation.

The original observation that hMSCs can reduce T cell proliferation in vitro is mirrored by the in vivo finding that infusions of hMSCs can control GVHD following bone marrow transplantation. However, no correlation between the measured effects of MSCs in vitro and their effect in vivo has been demonstrated, because there is no universally accepted in vitro method for determining the potential in vivo therapeutic capacity of MSCs. The basic mechanisms of MSCs are depicted in Figures 2 and 3.

T CELL PROLIFERATION CAN BE SUPPRESSED BY ACTIVATED BUT NOT UNACTIVATED HUMAN MESENCHYMAL STEM CELLS IN VITRO

In vivo use of hMSCs for therapeutic indications does not require priming of MSCs.
A summary of the range of soluble and cell-surface proteins that may both mediate the effects of human mesenchymal stem cells (hMSCs) and provide information to hMSCs about the local environment. hMSCs may be able to both sense and respond to their immediate environment, which makes them ideal cells to tune the response to injury and/or inflammation. Abbreviations: CLTA4, cytotoxic T-lymphocyte antigen 4; DC, dendritic cell; IDO, indoleamine-2,3-dioxygenase; IFN, interferon; Ig, immunoglobin; IL, interleukin; NK, natural killer; NO, nitric oxide; PGE2, prostaglandin E2; SDF, stromal cell–derived factor; TGF, transforming growth factor; Th, T helper cell; TLR, Toll-like receptor; Treg, regulatory T cell; VEGF, vascular endothelial growth factor.

However, in vitro, MSCs must be activated in order for them or for conditioned medium from such cultures to suppress T cell proliferation. MSC effects on T cell proliferation in vitro appear to have both contact-dependent and contact-independent components (10). This conclusion resulted from observations that conditioned medium from MSCs activated either singly or in combination with cytokines [IL-1β, tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ)] or by coculture with allogeneic peripheral-blood mononuclear cells (PBMCs) can reduce T cell proliferation of (a) PBMCs stimulated with mitogens such as phytohemagglutinin, (b) PBMCs stimulated through the T cell receptor (TCR) complex using a combination of antibodies directed against CD3 and CD28, (c) T cell lines created by the stimulation conditions given in items a and b, and (d) antigen-specific T cell clones (17, 24, 25). The greatest impediments to interpreting how these data relate to the effectiveness of any single group of culture-expanded MSCs are as follows:

1. There is no established manner in which to correlate MSCs’ capacity to reduce T cell proliferation with their potential therapeutic effects (discussed in Reference 1).

2. Individual batches of MSCs may display variation in suppressive ability in vitro,
Paracrine effects of cultured mesenchymal stem cells (MSCs). The secretion of a broad range of bioactive molecules is now believed to be the main mechanism by which MSCs achieve their therapeutic effect. This mechanism can be divided into six main actions: immunomodulation, antiapoptosis, angiogenesis, support of the growth and differentiation of local stem and progenitor cells, antiscarring, and chemoattraction. Although the number of molecules known to mediate the paracrine action of MSCs increases every day, only a few factors that are secreted by cultured MSCs are shown. The immunomodulatory effects of MSCs consist of inhibition of the proliferation of CD8^+ and CD4^+ T lymphocytes and natural killer (NK) cells, suppression of immunoglobulin production by plasma cells, inhibition of maturation of dendritic cells (DCs), and stimulation of the proliferation of regulatory T cells. The secretion of prostaglandin E2 (PGE2), human leukocyte antigen G5 (HLA-G5), hepatocyte growth factor (HGF), inducible nitric oxide synthase (iNOS), indoleamine-2,3-dioxygenase (IDO), transforming growth factor β (TGF-β), leukemia-inhibitory factor (LIF), and interleukin (IL)-10 contributes to this effect. MSCs also limit apoptosis, and the principal bioactive molecules responsible for this process are HGF, TGF-β, vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), stanniocalcin 1, and granulocyte macrophage colony-stimulating factor (GM-CSF). MSCs stimulate local angiogenesis by secretion of extracellular matrix (ECM) molecules, VEGF, IGF-1, phosphatidylinositol-glycan biosynthesis class F protein (PIGF), monocyte chemoattractant protein 1 (MCP-1), basic fibroblast growth factor (bFGF), and IL-6; they also stimulate mitosis of tissue-intrinsic progenitor or stem cells by secretion of stem cell factor (SCF), macrophage colony-stimulating factor (M-CSF), stromal cell-derived factor (SDF-1), LIF, and angiopoietin 1. Moreover, HGF and bFGF (and possibly adrenomedullin) produced by MSCs contribute to inhibition of scarring caused by ischemia. Finally, a group of at least 15 chemokines produced by MSCs can elicit leukocyte migration to the injured area, which is important for normal tissue maintenance. Adapted from Reference 23 with permission.
but whether or not that is predictive of their potency in vivo is largely unknown. The effects of MSCs in vivo appear to be pleiotropic and influenced by their local environment, whereas that dimension of cell-cell interaction is lacking in vitro.

Soon after MSCs were first observed to reduce T cell proliferation in vitro, immune-activated MSCs or conditioned medium from immune-activated MSCs was found to reduce the frequency of IFN-γ- and IL-2-secreting T cells (10). These data used enzyme-linked immunosorbent spot assays to assess the frequency of T cell response to both mitogens and TCR ligation in vitro (26). Complementary data obtained via enzyme-linked immunosorbent spot assays suggest that the absolute amounts of T cell cytokines produced under similar stimulation conditions are also reduced (10).

Some controversy exists regarding whether, under all circumstances, MSC effector function in vitro occurs in tandem (i.e., proliferation and production of IFN-γ by T cells are reduced) (27, 28). This controversy fuels the debate as to what measurement of MSC potency would best reflect the in vitro potential of any particular expanded population of MSCs. The observation that under some but not all circumstances the amounts of T cell proliferation and cytokine secretion are similar or dissimilar probably depends on the source of MSCs. (hMSCs and mouse MSCs are not equivalent, but hMSCs may be used in, for example, mouse models of autoimmune disease, where they exert immunosuppressive effects or may induce actual immune tolerance.) The absolute amount of cytokine production may not be the most relevant measurement, and ratios of cytokine production (which are not yet fully understood) may be a better barometer for predicting the in vivo function of MSCs.

MESENCHYMAL STEM CELLS AND CYTOKINES

Like IL-1β, IFN-γ appears to be one of the cytokines that can prime MSCs in vitro. However, IL-1β may not require combinations of cytokines and may alone be sufficient to prime hMSCs, whereas the effect of IFN-γ may be amplified in the presence of other proinflammatory cytokines, such as IL-1β and TNF-α. Theoretically, IFN-γ may also interfere with hMSC function. One of the reasons that hMSCs appear to be immune privileged is that constitutively freshly isolated and cultured MSCs lack MHC class II expression. In the presence of IFN-γ, culture may induce MHC class II expression and transform MSCs into cells that can act as APCs rather than as immune-modulating cells (29).

Memory T cell production of IL-2 and IFN-γ to both specific antigens and lectins is reduced by coculture with MSCs or by medium of MSCs activated in vitro. Boccelli-Tyndall et al. (30) recently demonstrated that, under conditions meant to mimic conditions observed in inflammatory joint disease, exogenous addition of IL-15 and IL-7 may contribute more than IL-2 to proliferation of PBMCs, T cells, and T cell subsets in vitro. Furthermore, when low ratios of either MSCs or articular chondrocytes are added, proliferation of most but not all of these subsets may be augmented in a cytokine-dependent fashion. In contrast, at high ratios of MSCs or articular chondrocytes to effector cells, proliferation is suppressed rather than enhanced (30).

IL-10, an anti-inflammatory cytokine that contributes to the downregulation of T cell proliferation and other effector responses, may be produced by mature dendritic cells that have been cocultured either with hMSCs or with conditioned medium from cytokine/PBMC-activated MSCs (18, 27, 31). These data suggest that seemingly antigen-independent proliferation may respond to MSC-mediated effects and that choosing the right dose of MSCs in a therapeutic setting may be critical for optimal results.

MESENCHYMAL STEM CELLS AND REGULATORY T CELLS

Regulatory T cells (Tregs) suppress the proliferation and cytokine production of effector T cell populations, thereby mediating...
peripheral tolerance by targeting autoreactive T cells that arise de novo or escape thymic deletion. Tregs consist of several different subsets with overlapping but distinct actions, particularly in human disease. Tregs may be identified by the coexpression of CD4 and CD25 and by the expression of the transcription factor FoxP3, the production of regulatory cytokines IL-10 and TGF-β, and the ability to suppress proliferation of activated CD4+CD25+ T cells in coculture experiments. Purifying Tregs relies largely on their CD4+CD25+ phenotype.

Differential expression of CD127 (the α-chain of the IL-7 receptor) enables flow cytometry–based separation of human CD4+CD25+ Tregs from CD127+ nonregulatory T cells (32). TGF-β is another anti-inflammatory cytokine that is implicated in mediating MSC responses and that may have T cell–independent effects. For example, TGF-β produced in experiments using MSCs alters angiogenesis following injury (33, 34). Tregs secrete TGF-β, and when used in vitro, TGF-β in combination with IL-2 directs the differentiation of T cells into Tregs in which CD4+ cells (a) express high levels of surface CD25, (b) express the nuclear transcription factor FoxP3, and (c) suppress the proliferation of TCR-dependent proliferation of effector CD25 null or CD25 low T cells in a nonautologous fashion (reviewed in Reference 35).

A particularly interesting and important observation in the field of arthritis is that TNF-α can downmodulate the function of CD4+CD25+ Tregs; anti-TNF-α antibodies increase FoxP3 messenger RNA and protein expression (36). MSCs downregulate TNF-α as one of their mechanisms of action. Thus, it follows that treatment of RA PBMCs with conditioned MSC medium may increase the amount of Tregs and improve their function. By using MSCs derived from human adipose tissue, Gonzalez et al. (37) demonstrated an increase in Treg numbers in adipose-derived hMSC–treated arthritic mice. In vitro, these cells appear to suppress collagen-specific antigen responses of PBMCs from RA patients, which suggests that induction of Tregs could be a goal in the treatment of RA (38).

THE ROLE OF COS T IM ULATORY MOLECULES IN MESENCHYMAL STEM CELL REGULATION OF IMMUNE RESPONSE

hMSCs express few to none of the B7-1/B7-2 (CD80/CD86) costimulatory–type molecules; this appears to contribute, at least in part, to their immune privilege. Mechanisms that lead to immune tolerance rely on interrelated pathways that involve complex cross talk and cross-regulation of T cells and APCs by one another. Both soluble mediators and modulation exerted via complex networks of cytokines and costimulatory molecules appear to play a role in MSC regulation of T cells, and these mechanisms appear to invoke both contact-independent and dependent pathways.

Although many of the studies we discuss herein use MSC-conditioned medium, both contact-independent and –dependent mechanisms are probably invoked in the therapeutic use of MSCs (22, 39). In addition to cytokines, the network of costimulatory molecules is hypothesized to play a prominent role in modulating tolerance and inflammation. MSCs downregulate the expression of costimulatory molecules (12, 15, 40–44). The discovery of new functions for B7 family members, together with the identification of additional B7 and CD28 family members, is revealing new ways in which the B7:CD28 family may regulate T cell activation and tolerance. Not only do CD80/86:CD28 interactions promote initial T cell activation, they also regulate self-tolerance by supporting CD4+CD25+ Treg homeostasis (40–44). Cytotoxic T-lymphocyte antigen 4 (CTLA-4) can exert inhibitory effects in both B7-1/B7-2–dependent and –independent fashions. B7-1 and B7-2 can signal bidirectionally by engaging CD28 and CTLA-4 on T cells and by delivering signals into B7-expressing cells (45). The five B7 family members—inducible costimulator (ICOS) ligand, PD-L1 (B7-H1),
PD-L2 (B7-DC), B7-H3, and B7-H4 (B7x/B7-S1)—are expressed on professional APC cells, and B7-H4 and perhaps B7-H1 are also expressed on hMSCs and on cells within nonlymphoid organs. These observations may provide a new means for regulating T cell activation and tolerance in peripheral tissues (17, 39, 46, 47). ICOS and PD-1 are inducibly expressed on T cells, and they regulate previously activated T cells, and they regulate previously activated T cells (48). Both the ICOS:ICOSL pathway and the PD-1:PD-L1/PD-L2 pathway play a critical role in regulating T cell activation and tolerance (48). There is consensus that both CTLA-4 and PD-1 inhibit T cell and B cell activation and may play a crucial role in peripheral tolerance (48, 49). Both CTLA-4 and PD-1 functions are associated with RA and other autoimmune diseases. PD-1 is overexpressed on CD4+ T cells in the synovial fluid of RA patients (50). Whether or not these costimulatory molecules are critical mediators of MSC-mediated immune suppression and/or tolerance in vivo is still under investigation.

Effect of Mesenchymal Stem Cells on the T Cell Cycle

Several but not all studies suggest that one mechanism to reduce the proliferation of T cells may occur via effects on the cell cycle, particularly in the G1 phase or the G0/G1 transition, which result in the induction of T cell anergy (51). In these studies, Glennie et al. (51) showed that cyclin D2 expression is profoundly inhibited, whereas p27kip1 was upregulated, consistent with the phenomenon termed division arrest anergy, in which T cells remain in the G1/G0 phase and do not recover their proliferative capacity even after contact with MSCs ceases.

Effect of Mesenchymal Stem Cells on B Cells

The initial reports of the effect of MSCs on B cells came from studies in mice; they suggested that MSCs have dampening effects on the proliferation of B cells. However, the events that determine whether MSCs augment or inhibit immunoglobulin production appear to be dependent on the dose of MSCs used and on the activation state of the B cells themselves; some differences between MSC effects on human peripheral B cells versus splenic B cells retrieved postmortem have been observed (52–54).

Effects of Mesenchymal Stem Cells on Natural Killer Cells

Studies of the effect of MSCs on natural killer (NK) cells are particularly controversial, given that most data suggest that MSCs do not inhibit the cytotoxicity of NK cells. Furthermore, any attenuation on NK function that might occur when MSC ligands bind to NK-stimulatory receptors occurs at such a low level that the binding of MHC class I molecules to Kir family—inhibitory NK receptors probably tips the balance in favor of tolerance (rather than cytotoxicity) of NK cells toward MSCs (16, 55).

Mesenchymal Stem Cell Response to Injury

Another characteristic of hMSCs is their ability to quell inflammation resulting from injury, allogeneic solid organ transplants, and autoimmune disease. hMSCs can effectively suppress the normal growth and expansion of stimulated T cells (13). Consistent with in vitro studies, murine allogeneic MSCs are effective cellular therapies in the treatment of murine models of human disease (24, 56–60). Several studies have documented the dramatic clinical improvements observed in animal models using systemically introduced hMSCs as a therapy in mouse models of multiple sclerosis (24, 56–60), inflammatory bowel disease (61–63), infarct, stroke, and other devastating neurologic diseases (64, 65), as well as diabetes (66). These findings strongly suggest that xenogeneic hMSCs are not immunologically recognized by various immunocompetent mouse models of disease. hMSCs may be able to home to sites of inflammation, where dampening of inflammation can begin and regeneration of injured
tissues leading to normal, scarless healing can proceed. However, the precise mechanisms behind these actions have not yet been elucidated.

NO produced by T cells may mediate its effect through phosphorylation of Stat-5 with the effect being lower levels of T cell proliferation. Inhibition of NO synthase or inhibition of prostaglandin synthesis was able to obviate MSC-dependent effects on proliferation. Although indoleamine-2,3-dioxygenase (IDO) has been hypothesized to be important in mediating the effect of NO, neutralizing IDO by using a blocking antibody did not interfere with NO’s suppressive effects (67, 69). In vivo, the current paradigm is that injury, inflammation, and/or foreign cells can lead to T cell activation, and those T cells produce proinflammatory cytokines including, but not limited to, TNF-α, IFN-γ, IL-1α, and IL-1β. Combinations of cytokines may also induce cell production of chemokines, some of which bind to CXCR3R-expressing cells (including T cells) that colocalize with MSCs. MSCs then produce NO, which inhibits Stat-5 phosphorylation, thereby leading to cell-cycle arrest (and thus halting T cell proliferation) (67). In addition, iNOS appears to be important in mouse MSC in vivo effects: MSCs from mice that lack iNOS (or IFN-γR1) are unable to suppress GVHD (Figure 4). In contrast to mouse MSCs that use NO in mediating their immune-suppressive effect, hMSCs and MSCs from nonhuman primates appear to mediate their immune-suppressive effects via IDO (68). There is some controversy about whether the effect of IDO results from local depletion of tryptophan itself, from the accumulation of tryptophan metabolites (which is suggested by data showing that use of a tryptophan antagonist, 1-methyl-L-tryptophan, restored alloreactivity that would otherwise have been suppressed by MSCs), or from some combination thereof (Figure 5) (69). In addition to affecting the JAK-STAT pathway, NO may also influence mitogen-activated protein kinase and nuclear factor κB, which would cause a reduction in the gene expression of proinflammatory cytokines.

ANIMAL MODELS

Consistent with results from in vitro studies, murine allogeneic MSCs are effective in the treatment of murine models of human disease (58, 60, 70, 71). Several studies have documented the dramatic clinical improvements observed in animal models by using systemically introduced xenogeneic hMSCs rather than allogeneic MSCs as a therapy in mouse models of multiple sclerosis and amyotrophic lateral sclerosis (65), inflammatory bowel disease, infarct, stroke, diabetes (66), and GVHD. A major advantage of demonstrating success using hMSCs in mouse models of human disease is that the possibility of gathering mechanistic data—beyond measuring biomarkers from readily obtainable body fluids or using noninvasive imaging technology—may be realized, perhaps in the course of a clinical trial.

Mesenchymal Stem Cells in Mouse Models of Arthritis

In experiments designed to study the trafficking of hMSCs, we used mice that contain a single copy of a transgene (Tg) with an altered 3’ regulatory region that causes chronic TNF-α overexpression, which leads to the development of severe erosive polyarthritis (15–16). The TNF-Tg mice resemble RA patients in terms of their arthritis, and the arthritis phenotype is obviated by blocking with the anti-TNF-α monoclonal antibody infliximab. The primary reason for using these mice is to determine whether exogenous MSCs localize to lymph nodes, joints, and/or lung as is observed in the ovalbumin model of chronic asthma and in models of acute lung injury (72; T. Bonfield, M. Kolozem, D. Lennon, B. Zuchowski, S. Yang & A.I. Caplan, manuscript submitted). To determine where hMSCs localize in arthritic mice, we injected hMSCs into five-month-old TNF-Tg mice via the carotid artery. The hMSC-infused mice showed a reduction in ankle arthritis; ankle swelling was reduced from 4.5 mm to 3.5 mm in one
Mesenchymal stem cell (MSC) immunomodulation via nitric oxide (NO) and chemokines. MSCs are activated by coculturing with αCD3-stimulated splenocytes, their supernatant, or a combination of one or more of IFN-γ, TNF-α, IL-1α, or IL-1β (presumably similar activation occurs in vivo). In the absence of coculture with T cell cytokines, MSCs do not suppress T cell proliferation. Inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) is upregulated in MSCs, but neutralization of cytokines during activation of MSCs prevents iNOS mRNA upregulation. Activated MSCs produce large numbers of chemokines, including CXCL-9 and CXCL-10. MSCs from iNOS/−/− or IFN-γR1/−/− mice still attract T cells but cannot induce immune suppression of graft-versus-host disease (GVHD). Thus, in mice, NO production is required for the suppression of pathological immune response in vivo. In the absence of NO, MSC-mediated T cell recruitment enhances inflammation. The iNOS inhibitor N5-[imino(methylamino)methyl]-L-ornithine, citrate (L-NMMA) attenuates the capacity of mouse MSCs to be immunosuppressive: When iNOS is inhibited, T cell proliferation is not susceptible to suppression by MSCs, and MSCs fail to confer the protection from GVHD that is observed with the use of wild-type MSCs. Abbreviations: IFN, interferon; NK, natural killer.
Mesenchymal stem cell (MSC) immunomodulation through prostaglandin E2 (PGE2) and indoleamine-2,3-dioxygenase (IDO) production. Both interferon-γ (IFN-γ)-independent pathways and IFN-γ-dependent pathways appear to be important for immune suppression by MSCs. Mechanisms of MSC-mediated effects that appear to be independent of IFN-γ include COX-1 and COX-2 expression and production of PGE2. PGE2 secretion decreases dramatically when MSCs are treated with indomethacin (a nonsteroidal anti-inflammatory drug that blocks PGE biosynthesis by inhibiting COX). PGE2 effects may be mediated at least in part via soluble factors. Human MSCs cultured in vitro constitutively express messenger RNA for hepatocyte growth factor (HGF), interleukin-10 (IL-10), and transforming growth factor β1 (TGF-β1), all of which can be detected in MSC supernatants. IL-10 and TGF-β1 inhibit proinflammatory cytokine secretion by antigen presenting cells (APCs) and are involved in the induction of regulatory T cells (Tregs). HGF, a cytokine with ant apoptotic and hematopoietic activity, is a potent immunomodulator that plays a role in MSC-mediated effects. IFN-γ secretion leads to increased HGF and TGF-β1 but has little effect on the level of IL-10. MSCs do not constitutively express IDO, although IFN-γ stimulation of MSCs induces IDO expression. IDO appears to suppress T cell activity either through accumulation of tryptophan metabolites or by depletion of tryptophan, or both. Addition of 1-methyl-L-tryptophan, a chemical antagonist of IDO, restores T cell proliferation in vitro, which suggests that the accumulation of tryptophan metabolites such as kynurenic, rather than tryptophan depletion, is more important for MSC-mediated immunosuppressive effects.

Other investigators (22) have reported that in the collagen-induced model of arthritis, mice infused with MSCs have increased numbers of CD4+CD25+ cells that express FoxP3 and therefore have a Treg phenotype. We are interested in exploring the effect of hMSCs in a model that is thought to be incited not by abnormalities in T cells per se, but rather by the unregulated secretion of TNF-α, as may occur in some RA and inflammatory bowel disease patients. Recent data obtained from the collagen-induced arthritis model, in which mouse MSCs did not protect against arthritis in vivo but did reduce T cell proliferative responses in vitro, also suggest that (a) we do not yet have appropriate in vitro measures that reflect the potential therapeutic utility of MSCs in vivo and (b) mouse MSCs do not have the same immunoregulatory capacity as hMSCs (28).

Mesenchymal Stem Cells in Mouse Models of Inflammatory Lung Disease

Mice induced to develop both acute and chronic asthma with ovalbumin (72; T. Bonfield, M. Kolozem, D. Lennon, B. Zuchowski, S. Yang & A.I. Caplan, manuscript submitted) are susceptible to immune regulation by hMSCs and show inhibition of the autoimmune and allergic phenotype, respectively. In
Table 1 Clinical trials registered as of April 19, 2010, at http://clinicaltrials.gov

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Indication</th>
<th>Phase</th>
<th>Number of patients and study identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Moderate to severe Crohn’s disease</td>
<td>2</td>
<td>10, NCT00294112</td>
</tr>
<tr>
<td>Shaheed Beheshti Medical University, Iran</td>
<td>Improvement of liver function in liver cirrhosis patients</td>
<td>—</td>
<td>30, NCT00420134</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Acute GVHD</td>
<td>2</td>
<td>31, NCT00136903</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Treatment-resistant moderate to severe Crohn’s disease</td>
<td>3</td>
<td>200, NCT00543374</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Steroid treatment–refractory GVHD</td>
<td>3</td>
<td>240, NCT00366145</td>
</tr>
<tr>
<td>University of Tehran, Iran</td>
<td>Homozygous familial hypocholesterolemia</td>
<td>1</td>
<td>1, NCT00515307</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>MSC intra-articular injection following meniscectomy</td>
<td>1–2</td>
<td>60, NCT00225095</td>
</tr>
<tr>
<td>Translational Research Informatics Center Kobe/Hyogo, Japan</td>
<td>Adult periodontitis</td>
<td>1–2</td>
<td>10, NCT00221130</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital</td>
<td>Severe osteogenesis imperfecta by allogeneic bone marrow transplantation</td>
<td>1</td>
<td>9, NCT00705120</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Treatment-refractory acute GVHD</td>
<td>2</td>
<td>30, NCT00284986</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital</td>
<td>Marrow mesenchymal cell therapy for osteogenesis imperfecta (pilot study)</td>
<td>?</td>
<td>14, NCT00187018</td>
</tr>
<tr>
<td>Rigshospitalet, Denmark</td>
<td>Vasculargenesis in patients with severe myocardial ischemia</td>
<td>1–2</td>
<td>40, NCT00260338</td>
</tr>
<tr>
<td>Cairo University, Egypt</td>
<td>Chronic spinal cord injury—autologous bone marrow transplant</td>
<td>1–2</td>
<td>80, NCT00816803</td>
</tr>
<tr>
<td>Ruhr University of Bochum, Germany</td>
<td>Diabetic patients with critical limb ischemia</td>
<td>2</td>
<td>30, NCT01065337</td>
</tr>
<tr>
<td>St. Jude Children’s Research Hospital</td>
<td>Stromal therapy of osteodysplasia after allogeneic bone marrow transplantation</td>
<td>1</td>
<td>8, NCT00186914</td>
</tr>
<tr>
<td>Active, closed to enrollment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Comprehensive Cancer Center</td>
<td>Acute or chronic GVHD after donor stem cell transplant</td>
<td>1</td>
<td>49, NCT00361049</td>
</tr>
<tr>
<td>Medipost Co., Ltd., United Kingdom</td>
<td>Promote engraftment of unrelated hematopoietic stem cell transplantation</td>
<td>1–2</td>
<td>10, NCT00823316</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Chronic obstructive pulmonary disease</td>
<td>2</td>
<td>60, NCT00683722</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Chondrogen intra-articular injection following meniscectomy</td>
<td>1–2</td>
<td>50, NCT00702741</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Acute myocardial infarction</td>
<td>1</td>
<td>48, NCT00114452</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Treatment-resistant moderate to severe Crohn’s disease</td>
<td>3</td>
<td>270, NCT00482092</td>
</tr>
<tr>
<td>Stempeutics Research, Pvt. Ltd., Malaysia</td>
<td>Critical limb ischemia</td>
<td>1–2</td>
<td>20, NCT00883870</td>
</tr>
<tr>
<td>Stempeutics Research, Pvt. Ltd., Malaysia</td>
<td>Acute myocardial infarction</td>
<td>1–2</td>
<td>20, NCT00883727</td>
</tr>
<tr>
<td>Sun Yat-sen University, China</td>
<td>MSCs via hepatic artery for liver cirrhosis</td>
<td>2</td>
<td>50, NCT00976287</td>
</tr>
<tr>
<td>Sun Yat-sen University, China</td>
<td>MSCs via portal vein for liver cirrhosis</td>
<td>2</td>
<td>60, NCT00993941</td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Indication</th>
<th>Phase</th>
<th>Number of patients and study identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge University, United Kingdom</td>
<td>Multiple sclerosis</td>
<td>1–2</td>
<td>10, NCT00395200</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Treatment of recently diagnosed type 1 diabetes mellitus</td>
<td>2</td>
<td>60, NCT00690066</td>
</tr>
<tr>
<td>Active, recruiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Military Medical University, China</td>
<td>Diabetic foot disease</td>
<td>2–3</td>
<td>80, NCT00955669</td>
</tr>
<tr>
<td>Juan Jesús Bandera, Fundación Progreso y Salud, Spain</td>
<td>Secondary progressive multiple sclerosis</td>
<td>1–2</td>
<td>30, NCT01056471</td>
</tr>
<tr>
<td>Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, China</td>
<td>Primary Sjögren’s syndrome</td>
<td>1–2</td>
<td>20, NCT00953485</td>
</tr>
<tr>
<td>University of Liège, Belgium</td>
<td>Prevention for graft rejection and GVHD</td>
<td>2</td>
<td>30, NCT00504803</td>
</tr>
<tr>
<td>Digestive Disease Research Center, Medical Sciences and University of Tehran, Iran</td>
<td>Decompensated cirrhosis</td>
<td>2</td>
<td>50, NCT00476060</td>
</tr>
<tr>
<td>The Children’s Hospital of Philadelphia</td>
<td>Osteogenesis imperfecta</td>
<td>1</td>
<td>12, NCT01061099</td>
</tr>
<tr>
<td>Cell and Tissue Therapies, Australia</td>
<td>Crohn’s disease</td>
<td>2</td>
<td>20, NCT01090817</td>
</tr>
<tr>
<td>Christian Medical College, India</td>
<td>GVHD</td>
<td>1–2</td>
<td>25, NCT00314483</td>
</tr>
<tr>
<td>Nantes University Hospital, France</td>
<td>MSC genome</td>
<td>Observational</td>
<td>25, NCT00836732</td>
</tr>
<tr>
<td>University of Liège, Belgium</td>
<td>GVHD or poor graft function</td>
<td>2</td>
<td>100, NCT00603330</td>
</tr>
<tr>
<td>Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, China</td>
<td>Systemic sclerosis</td>
<td>1–2</td>
<td>20, NCT00962923</td>
</tr>
<tr>
<td>Fuzhou General Hospital, China</td>
<td>Type 1 diabetes mellitus</td>
<td>1–2</td>
<td>30, NCT00646724</td>
</tr>
<tr>
<td>Fundación Progreso y Salud, Spain</td>
<td>Limb ischemia in diabetes mellitus</td>
<td>1–2</td>
<td>36, NCT01079403</td>
</tr>
<tr>
<td>University Hospital of Salamanca, Spain</td>
<td>GVHD</td>
<td>1–2</td>
<td>15, NCT00447460</td>
</tr>
<tr>
<td>University Hospital Dresden, Germany</td>
<td>Osteoarthritis</td>
<td>Observational</td>
<td>30, NCT01038596</td>
</tr>
<tr>
<td>Royan Institute, Iran</td>
<td>MSC collagen scaffold in full-thickness articular cartilage</td>
<td>1</td>
<td>6, NCT00850187</td>
</tr>
<tr>
<td>Angioblast Systems</td>
<td>Heart failure</td>
<td>2</td>
<td>60, NCT00721045</td>
</tr>
<tr>
<td>Ullevaal University Hospital, Norway</td>
<td>Articular cartilage defects</td>
<td>1</td>
<td>50, NCT00885729</td>
</tr>
<tr>
<td>University Hospital Toulouse, France</td>
<td>Myocardial infarction</td>
<td>1–2</td>
<td>10, NCT01076920</td>
</tr>
<tr>
<td>Hadassah Medical Organization, Israel</td>
<td>Distal tibial fractures</td>
<td>1–2</td>
<td>24, NCT00250302</td>
</tr>
<tr>
<td>Yonsei University, Korea</td>
<td>Musculoskeletal atrophy</td>
<td>2</td>
<td>Not specified, NCT00911365</td>
</tr>
<tr>
<td>Hadassah University Hospital, Israel</td>
<td>Amyotrophic lateral sclerosis</td>
<td>1–2</td>
<td>24, NCT01051882</td>
</tr>
<tr>
<td>University of Miami</td>
<td>Cardiac surgery</td>
<td>1–2</td>
<td>45, NCT01051882</td>
</tr>
<tr>
<td>Nanjing University Medical College–Affiliated Drum Tower Hospital, China</td>
<td>Refractory systemic lupus erythematosis</td>
<td>1–2a</td>
<td>20, NCT00698191</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Indication</th>
<th>Phase</th>
<th>Number of patients and study identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Heart, Lung and Blood Institute; University of Miami</td>
<td>Percutaneous stem cell injection delivery effects on neomyogenesis (pilot study)</td>
<td>1–2</td>
<td>30, NCT01087996</td>
</tr>
<tr>
<td>Fuzhou General Hospital, China</td>
<td>Recipients of living kidney allografts</td>
<td>Not specified</td>
<td>Not specified, NCT00658073</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Acute GVHD, expanded access</td>
<td>—</td>
<td>NCT00826046</td>
</tr>
<tr>
<td>Fuzhou General Hospital, China</td>
<td>Combination with hyperbaric oxygen therapy in type 2 diabetes mellitus</td>
<td>1–2</td>
<td>100, NCT00767260</td>
</tr>
<tr>
<td>University of Miami, Miller School of Medicine</td>
<td>Ischemic heart failure trial</td>
<td>1–2</td>
<td>60, NCT00768066</td>
</tr>
<tr>
<td>Children’s Health System, Alabama</td>
<td>Nonmalignant red blood cell disorders</td>
<td>2</td>
<td>35, NCT00957931</td>
</tr>
<tr>
<td>The Ohio State University</td>
<td>Thermal burn</td>
<td>Not specified</td>
<td>50, NCT00609661</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Acute myocardial infarction</td>
<td>2</td>
<td>220, NCT00877903</td>
</tr>
<tr>
<td>The Third Affiliated Hospital of Sun Yat-sen University, China</td>
<td>Liver failure</td>
<td>1–2</td>
<td>92, NCT00956891</td>
</tr>
<tr>
<td>Jaslok Hospital and Research Center, India</td>
<td>Parkinson’s disease</td>
<td>Not specified</td>
<td>5, NCT00976430</td>
</tr>
<tr>
<td>Universitair Medisch Centrum Utrecht, Netherlands</td>
<td>GVHD</td>
<td>1–2</td>
<td>10, NCT00827398</td>
</tr>
<tr>
<td>Osiris Therapeutics</td>
<td>Pediatric patients who have failed to respond to steroid treatment for acute GVHD</td>
<td>Expanded access</td>
<td>Not specified, NCT00759018</td>
</tr>
<tr>
<td>National Institutes of Health Clinical Center</td>
<td>Marrow collection for MSCs</td>
<td>Observational</td>
<td>250, NCT01071577</td>
</tr>
<tr>
<td>Medipost Co., Ltd., Korea</td>
<td>Microfracture in patients with knee articular cartilage injury or defect</td>
<td>3</td>
<td>104, NCT01041001</td>
</tr>
<tr>
<td>Helsinki University Hospital, Finland</td>
<td>Coronary artery bypass graft and MSCs in congestive heart failure</td>
<td>2</td>
<td>60, NCT00418418</td>
</tr>
<tr>
<td>Masonic Cancer Center, University of Minnesota</td>
<td>Epidermolysis bullosa</td>
<td>2</td>
<td>75, NCT01033552</td>
</tr>
<tr>
<td>Kanazawa University, Japan; Cyton Biosciences, Ltd., United Kingdom</td>
<td>Liver regeneration therapy using autologous adipose tissue–derived stromal cells</td>
<td>Not specified</td>
<td>9, NCT00913289</td>
</tr>
<tr>
<td>Emory University</td>
<td>Effects of thiazolidinediones on human bone marrow stromal cell differentiation capacity in vitro and in vivo (pilot study)</td>
<td>Not specified</td>
<td>12, NCT00927355</td>
</tr>
<tr>
<td>TCA Cellular Therapy, LLC</td>
<td>Severe coronary ischemia</td>
<td>2</td>
<td>60, NCT00790764</td>
</tr>
<tr>
<td>Cardio 3 BioSciences</td>
<td>Heart failure secondary to ischemic cardiomyopathy</td>
<td>2–3</td>
<td>240, NCT00810238</td>
</tr>
<tr>
<td>Kanazawa University, Japan</td>
<td>Liver regeneration</td>
<td>Not specified</td>
<td>4, NCT01062750</td>
</tr>
<tr>
<td>Pluristem Therapeutics, Inc., Israel</td>
<td>PLX-PAD cells for the treatment of critical limb ischemia</td>
<td>1</td>
<td>12, NCT00951210</td>
</tr>
<tr>
<td>Pluristem Therapeutics, Inc., Israel</td>
<td>PLX-PAD cells for the treatment of critical limb ischemia</td>
<td>—</td>
<td>15, NCT00919958</td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Indication</th>
<th>Phase</th>
<th>Number of patients and study identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthofix, Inc.</td>
<td>Novel allogeneic, cancellous, bone matrix containing viable stem cells (Trinity Evolution Matrix) in subjects undergoing tibiotalar arthrodesis with or without hind foot fusion</td>
<td>—</td>
<td>100, NCT00988338</td>
</tr>
<tr>
<td>Angioblast Systems</td>
<td>NeoFuse in subjects requiring posterolateral lumbar fusion</td>
<td>1–2</td>
<td>24, NCT00810212</td>
</tr>
<tr>
<td>University Hospital, France</td>
<td>Grafting for open tibial shaft fracture</td>
<td>Not specified</td>
<td>186, NCT00512434</td>
</tr>
<tr>
<td>Mesoblast, Ltd., Australia</td>
<td>Subjects six weeks after an anterior cruciate ligament reconstruction</td>
<td>1–2</td>
<td>24, NCT01088191</td>
</tr>
<tr>
<td>Hospital Universitario Reina Sofia, Spain</td>
<td>Idiopathic dilated cardiomyopathy</td>
<td>2</td>
<td>30, NCT00629096</td>
</tr>
<tr>
<td>Cairo University School of Medicine, Egypt</td>
<td>Cartilage defects</td>
<td>2</td>
<td>Not specified, NCT00891301</td>
</tr>
<tr>
<td>Leiden University Medical Center, Netherlands</td>
<td>Subclinical rejection</td>
<td>1–2</td>
<td>15, NCT00734396</td>
</tr>
<tr>
<td>Angioblast Systems</td>
<td>Myocardial infarction</td>
<td>1–2</td>
<td>25, NCT00555828</td>
</tr>
<tr>
<td>The Heart Center, Rigshospitalet, Denmark</td>
<td>Heart failure</td>
<td>—</td>
<td>60, NCT00644410</td>
</tr>
<tr>
<td>University Hospital Grenoble, France</td>
<td>Ischemic stroke</td>
<td>2</td>
<td>30, NCT00875654</td>
</tr>
<tr>
<td>Fuzhou General Hospital, China</td>
<td>Chronic allograft nephropathy</td>
<td>1–2</td>
<td>20, NCT00659620</td>
</tr>
<tr>
<td>Guangdong General Hospital, Guangdong Academy of Medical Sciences, China</td>
<td>Chronic GVHD</td>
<td>2</td>
<td>52, NCT00972660</td>
</tr>
<tr>
<td>Fuzhou General Hospital, China</td>
<td>Osteonecrosis femoral head</td>
<td>1–2</td>
<td>30, NCT00813267</td>
</tr>
<tr>
<td>Fuzhou General Hospital, China</td>
<td>Lupus nephritis</td>
<td>1–2</td>
<td>20, NCT00659217</td>
</tr>
<tr>
<td>Cleveland Clinic, Mellen Center and University Hospitals (cosponsor)</td>
<td>Multiple sclerosis</td>
<td>1</td>
<td>24, NCT00813969</td>
</tr>
<tr>
<td>Universitair Ziekenhuis, Belgium</td>
<td>Coinfusion with umbilical cord transplant</td>
<td>1–2</td>
<td>20, NCT01092026</td>
</tr>
<tr>
<td>Mario Negri Institute for Pharmacological Research, Italy</td>
<td>Under basiliximab/low-dose RATG to induce renal transplant tolerance</td>
<td>1–2</td>
<td>6, NCT00752479</td>
</tr>
<tr>
<td>M.D. Anderson Cancer Center, University of Texas</td>
<td>Cord blood expansion on MSCs</td>
<td>1</td>
<td>100, NCT00498316</td>
</tr>
<tr>
<td>National Heart, Lung, and Blood Institute; Mount Sinai School of Medicine; Angioblast Systems</td>
<td>Effect of intramyocardial injection of mesenchymal precursor cells on myocardial function in LVAD bridge to transplant patients</td>
<td>2</td>
<td>80, NCT00927784</td>
</tr>
<tr>
<td>University of Li`ege, Belgium</td>
<td>MSC and HSC coinfusion in mismatched minitransplants</td>
<td>2</td>
<td>120, NCT01045382</td>
</tr>
<tr>
<td>Hadassah Medical Organization, Israel</td>
<td>GVHD</td>
<td>1–2</td>
<td>20, NCT00749164</td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Indication</th>
<th>Phase</th>
<th>Number of patients and study identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Orthopaedic Surgery, Emory University</td>
<td>Bone void defects in patients with benign bone lesions</td>
<td>2–3</td>
<td>50, NCT00851162</td>
</tr>
<tr>
<td>Stempeutics Research, Pvt. Ltd., Malaysia</td>
<td>Ischemic cerebral stroke</td>
<td>1–2</td>
<td>78, NCT01091701</td>
</tr>
<tr>
<td>Institut National de la Santé et de la Recherche Médicale, France</td>
<td>Postprostatectomy erectile dysfunction</td>
<td>1–2</td>
<td>31, NCT01089387</td>
</tr>
<tr>
<td>Ljubljana University Medical Center, Slovenia</td>
<td>Dilated cardiomyopathy</td>
<td>2</td>
<td>50, NCT00629018</td>
</tr>
<tr>
<td>University of California, Irvine</td>
<td>After stroke</td>
<td>2</td>
<td>33, NCT00908856</td>
</tr>
<tr>
<td>Veterans Affairs Medical Center, Washington, DC</td>
<td>Lipoaspirate injection in the treatment of diabetic lower-extremity wounds and venous stasis ulcers</td>
<td>Not specified</td>
<td>250, NCT00815217</td>
</tr>
</tbody>
</table>

Abbreviations: GVHD, graft-versus-host disease; HSC, hematopoietic stem cell; LVAD, left ventricular assist device; MSC, mesenchymal stem cell.

these studies, the investigators used hMSCs to treat ovalbumin-induced, immune-mediated lung injury in immunocompetent mice; the mice were cured with one exogenously infused dose of hMSCs given at 1 × 10⁶ per mouse (T. Bonfield & A.I. Caplan, personal communication). Serum assays show reduced IFN-γ levels in bronchoalveolar lavage fluid following hMSC treatment of mice in which ovalbumin was used to induce immune injury in the lungs. Goblet cell hypertrophy and the severity of the disease were significantly reduced following treatment with hMSCs. In addition, these studies documented the lack of a major immune response to hMSCs in the absence of asthmatic lung inflammation. Furthermore, systemic IFN-γ induction in this asthma model was significantly suppressed following treatment with hMSCs, which suggests that systemic immune modulation took place.

HUMAN STUDIES

The first therapeutic uses of allogeneic MSC transplants were in osteogenesis imperfecta and in breast cancer, in which MSCs were used to increase engraftment following transplantation with autologous peripheral-blood progenitor cell grafts (77, 78). These experiments were followed by studies of patients with inborn errors of metabolism, such as metachromatic leukodystrophy and Hurler syndrome, who received allogeneic MSCs without adverse effects and showed some improvement in nerve-conduction velocity but not in overall clinical status (79, 80). Studies of human leukocyte antigen–matched siblings undergoing bone marrow transplant demonstrate the potential utility of MSC therapy in GVHD (80).

Evidence that MSCs may be dysfunctional in disease is controversial. For example, MSCs are not abnormal in children with aplastic anemia, but they may be impaired in patients with idiopathic thrombocytopenia and in systemic lupus erythematosus (81–84). At least two reports (82, 83) suggest that abnormal osteogenic potential contributes to osteoporosis and that MSC growth, proliferative response, and osteogenic differentiation may be affected in this disease.

Provided in Table 1 is a summary of clinical trials that are completed, active, or waiting for activation. The trials are primarily...
interventional, although some aim to discern how to measure any observed effects of MSCs. Occasional trials are primarily observational and are focused on increasing knowledge of the mechanisms utilized by MSCs.

hMSCs are cultured primarily from bone marrow. However, an increasing number of publications suggest that adipose-derived hMSCs may also exert an immunoregulatory function (37, 38, 56, 61, 62, 85–87). How these MSCs differ from bone marrow–derived MSCs in terms of their pharmacokinetics, homing, and repair capacity and potency remains largely unexplored (88, 89). Also, there are a few reports of isolation of gingiva-derived MSCs whose functional effects are similar to or more potent than MSCs from bone marrow (90, 91). Immune suppression by human umbilical cord MSCs have also been reported in vivo in mouse and rat models of stroke, degenerative neurological disease, and bleomycin-induced lung disease (92–97).

CONCLUSIONS

In this review, we highlight known mechanisms that may mediate the effects of MSCs within the immune system. We also attempt to identify gaps in our knowledge as to when cell-cell contact is necessary for hMSC-mediated effects on the immune system, and we highlight potential differences between hMSCs and mouse MSCs, as well as MSCs derived from different tissue sources. The clinical trials utilizing hMSCs (Table 1), although interventional, may not provide mechanistic information even if desirable effects are observed. Challenges over the coming decade will be to define appropriate disease targets for MSC-based therapy, develop potency assays for MSCs from different sources, elucidate the many actions of MSCs in vivo, and develop in vitro readouts to positively predict the effects of MSCs in vivo. hMSCs will be approved for clinical use long before we have a precise picture of the mechanisms that govern their efficacy.

SUMMARY POINTS

1. hMSCs appear to have potent immune regulatory actions that make them attractive for use in human diseases in which tissue injury and/or inflammation occurs.

2. The precise mechanisms utilized by MSCs probably depend on the environment and the nature of the repair process required.

3. hMSCs alleviate GVHD without any observed adverse effects, making them attractive therapeutic agents in a variety of diseases.

4. The hypothesis that one important mechanism of action of hMSCs is to induce human Tregs appears plausible.

5. IDO metabolites and tryptophan depletion may play a role in hMSC suppression of T cell proliferation, but the precise mechanism(s) of how this process occurs requires further study.

FUTURE ISSUES

1. The range of diseases in which hMSCs could be therapeutic needs to be fully defined.

2. The range of sources from which therapeutic hMSCs can be isolated remains to be fully defined.
3. In vitro correlates that reflect the in vivo effects of hMSCs must be defined in terms of both predicting the effect of hMSCs in vivo and assessing potency between hMSC isolates.

4. The best route and number of hMSC infusions for disease-specific indications remain to be defined.

DISCLOSURE STATEMENT

A.I.C. is a founder of Osiris Therapeutics, Inc. (OTI). Case Western Reserve University receives royalties from OTI that are distributed to A.I.C. N.G.S. is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

The authors thank David Carrino, PhD; Tariq Haqqi, PhD; and Joy Whitbred, MS, for their thoughtful comments. A.I.C. acknowledges grants from the National Institutes of Health and the Virginia and David Baldwin Research Fund.

LITERATURE CITED

identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic
mesenchymal stem cells is not decreased in children with aplastic anemia. *Int. J. Hematol.* 89:126–27
82. Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V. 2009. Circulating mesenchy-
mal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. *Arthritis Rheum.*
60:3356–65
patients is reflected by altered mesenchymal stem cell dynamics. *J. Cell Biochem.* 75:414–23
84. Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V. 2009. Circulating mesenchy-
mal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. *Arthritis Rheum.*
60:3356–65
derived mesenchymal stem cells induce explosive T-cell proliferation. *Stem Cells Dev.* In press
cells as salvage therapy for treatment of severe refractory acute graft-versus-host disease in two children.
mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone
marrow–derived mesenchymal stem cells. *Immunol. Lett.* 126:37–42
characterization of freshly isolated adipose tissue–derived stem cells. *Stem Cells Dev.* 16:91–104
mesenchymal stem cells are superior to bone marrow–derived mesenchymal stem cells for cell therapy in
are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in
derived mesenchymal stem cells: role of B7–H1 and IDO. *Immunol. Cell Biol.* In press
cord blood–derived mesenchymal stem cells in vitro. *Immunology* 126:220–32
umbilical cord Wharton’s jelly–derived cells. *Stem Cells* 26:2865–74
cells decrease cytokines and inflammatory cells in acute myocardial infarction. *Stem Cells Dev.* 17:1207–19
97. Lee H, Jin HK, Bae JS. 2010. Human umbilical cord blood–derived mesenchymal stem cells improve neu-
rological abnormalities of Niemann-Pick type C mouse by modulation of neuroinflammatory condition.
Contents

Starting in Immunology by Way of Immunopathology
Emil R. Unanue ... 1

The Pathogenesis of Sepsis
Deborah J. Stearns-Kurosawa, Marcin F. Osuchowski, Catherine Valentine,
Shinichiro Kurosawa, and Daniel G. Remick ... 19

EGFR Mutations and Lung Cancer
Gilda da Cunha Santos, Frances A. Shepherd, and Ming Sound Tsao 49

Zebrafish Models for Cancer
Shu Liu and Steven D. Leach .. 71

Mouse Models of Cancer
Dong-Joo Cheon and Sandra Orsulic .. 95

Disorders of Bone Remodeling
Xu Feng and Jay M. McDonald ... 121

The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment
Michael A. Matthay and Rachel L. Zemans ... 147

The HIF Pathway and Erythrocytosis
Frank S. Lee and Melanie J. Percy ... 165

Parkinson's Disease: Genetics and Pathogenesis
Joshua M. Shulman, Philip L. De Jager, and Mel B. Feany 193

Pathogenic Mechanisms of HIV Disease
Susan Moir, Tae-Wook Chun, and Anthony S. Fauci 223

Pathogenesis of Myeloma
Kenneth C. Anderson and Ruben D. Carrasco 249

Alternative Macrophage Activation and Metabolism
Justin I. Odegaard and Ajay Chawla .. 275
The Pathobiology of Arrhythmogenic Cardiomyopathy

Jeffrey E. Saffitz ... 299

Mechanisms of Leukocyte Transendothelial Migration

William A. Muller ... 323

Retinoids, Retinoic Acid Receptors, and Cancer

Xiao-Han Tang and Lorraine J. Gudas 345

Biomedical Differences Between Human and Nonhuman Hominids:
Potential Roles for Uniquely Human Aspects of Sialic Acid Biology

Nissi M. Varki, Elizabeth Strobert, Edward F. Dick Jr., Kurt Benirschke,
and Ajit Varki ... 365

A Glimpse of Various Pathogenetic Mechanisms
of Diabetic Nephropathy

Yashpal S. Kanwar, Lin Sun, Ping Xie, Fu-you Liu, and Sheldon Chen 395

Pathogenesis of Liver Fibrosis

Virginia Hernandez-Gea and Scott L. Friedman 425

Mesenchymal Stem Cells: Mechanisms of Inflammation

Nora G. Singer and Arnold I. Caplan 457

Molecular Genetics of Colorectal Cancer

Eric R. Fearon ... 479

The Pathogenesis of Systemic Sclerosis

Tamiko R. Katsumoto, Michael L. Whitfield, and M. Kari Connolly 509

Indexes

Cumulative Index of Contributing Authors, Volumes 1–6 539

Cumulative Index of Chapter Titles, Volumes 1–6 542

Errata

An online log of corrections to Annual Review of Pathology: Mechanisms of Disease articles may be found at http://pathol.annualreviews.org